Codota Logo
NegLogLikelihood.indexOf
Code IndexAdd Codota to your IDE (free)

How to use
indexOf
method
in
opennlp.tools.ml.maxent.quasinewton.NegLogLikelihood

Best Java code snippets using opennlp.tools.ml.maxent.quasinewton.NegLogLikelihood.indexOf (Showing top 6 results out of 315)

  • Common ways to obtain NegLogLikelihood
private void myMethod () {
NegLogLikelihood n =
  • Codota IconDataIndexer indexer;new NegLogLikelihood(indexer)
  • Smart code suggestions by Codota
}
origin: apache/opennlp

expectation[oi] = 0;
for (ai = 0; ai < contexts[ci].length; ai++) {
 vectorIndex = indexOf(oi, contexts[ci][ai]);
 predValue = values != null ? values[ci][ai] : 1.0;
 expectation[oi] += predValue * x[vectorIndex];
empirical = outcomeList[ci] == oi ? 1 : 0;
for (ai = 0; ai < contexts[ci].length; ai++) {
 vectorIndex = indexOf(oi, contexts[ci][ai]);
 predValue = values != null ? values[ci][ai] : 1.0;
 gradient[vectorIndex] +=
origin: apache/opennlp

/**
 * Negative log-likelihood
 */
public double valueAt(double[] x) {
 if (x.length != dimension)
  throw new IllegalArgumentException(
    "x is invalid, its dimension is not equal to domain dimension.");
 int ci, oi, ai, vectorIndex, outcome;
 double predValue, logSumOfExps;
 double negLogLikelihood = 0;
 for (ci = 0; ci < numContexts; ci++) {
  for (oi = 0; oi < numOutcomes; oi++) {
   tempSums[oi] = 0;
   for (ai = 0; ai < contexts[ci].length; ai++) {
    vectorIndex = indexOf(oi, contexts[ci][ai]);
    predValue = values != null ? values[ci][ai] : 1.0;
    tempSums[oi] += predValue * x[vectorIndex];
   }
  }
  logSumOfExps = ArrayMath.logSumOfExps(tempSums);
  outcome = outcomeList[ci];
  negLogLikelihood -= (tempSums[outcome] - logSumOfExps) * numTimesEventsSeen[ci];
 }
 return negLogLikelihood;
}
origin: org.apache.opennlp/opennlp-tools

expectation[oi] = 0;
for (ai = 0; ai < contexts[ci].length; ai++) {
 vectorIndex = indexOf(oi, contexts[ci][ai]);
 predValue = values != null ? values[ci][ai] : 1.0;
 expectation[oi] += predValue * x[vectorIndex];
empirical = outcomeList[ci] == oi ? 1 : 0;
for (ai = 0; ai < contexts[ci].length; ai++) {
 vectorIndex = indexOf(oi, contexts[ci][ai]);
 predValue = values != null ? values[ci][ai] : 1.0;
 gradient[vectorIndex] +=
origin: ai.idylnlp/idylnlp-opennlp-tools-1.8.3

expectation[oi] = 0;
for (ai = 0; ai < contexts[ci].length; ai++) {
 vectorIndex = indexOf(oi, contexts[ci][ai]);
 predValue = values != null ? values[ci][ai] : 1.0;
 expectation[oi] += predValue * x[vectorIndex];
empirical = outcomeList[ci] == oi ? 1 : 0;
for (ai = 0; ai < contexts[ci].length; ai++) {
 vectorIndex = indexOf(oi, contexts[ci][ai]);
 predValue = values != null ? values[ci][ai] : 1.0;
 gradient[vectorIndex] +=
origin: ai.idylnlp/idylnlp-opennlp-tools-1.8.3

/**
 * Negative log-likelihood
 */
public double valueAt(double[] x) {
 if (x.length != dimension)
  throw new IllegalArgumentException(
    "x is invalid, its dimension is not equal to domain dimension.");
 int ci, oi, ai, vectorIndex, outcome;
 double predValue, logSumOfExps;
 double negLogLikelihood = 0;
 for (ci = 0; ci < numContexts; ci++) {
  for (oi = 0; oi < numOutcomes; oi++) {
   tempSums[oi] = 0;
   for (ai = 0; ai < contexts[ci].length; ai++) {
    vectorIndex = indexOf(oi, contexts[ci][ai]);
    predValue = values != null ? values[ci][ai] : 1.0;
    tempSums[oi] += predValue * x[vectorIndex];
   }
  }
  logSumOfExps = ArrayMath.logSumOfExps(tempSums);
  outcome = outcomeList[ci];
  negLogLikelihood -= (tempSums[outcome] - logSumOfExps) * numTimesEventsSeen[ci];
 }
 return negLogLikelihood;
}
origin: org.apache.opennlp/opennlp-tools

/**
 * Negative log-likelihood
 */
public double valueAt(double[] x) {
 if (x.length != dimension)
  throw new IllegalArgumentException(
    "x is invalid, its dimension is not equal to domain dimension.");
 int ci, oi, ai, vectorIndex, outcome;
 double predValue, logSumOfExps;
 double negLogLikelihood = 0;
 for (ci = 0; ci < numContexts; ci++) {
  for (oi = 0; oi < numOutcomes; oi++) {
   tempSums[oi] = 0;
   for (ai = 0; ai < contexts[ci].length; ai++) {
    vectorIndex = indexOf(oi, contexts[ci][ai]);
    predValue = values != null ? values[ci][ai] : 1.0;
    tempSums[oi] += predValue * x[vectorIndex];
   }
  }
  logSumOfExps = ArrayMath.logSumOfExps(tempSums);
  outcome = outcomeList[ci];
  negLogLikelihood -= (tempSums[outcome] - logSumOfExps) * numTimesEventsSeen[ci];
 }
 return negLogLikelihood;
}
opennlp.tools.ml.maxent.quasinewtonNegLogLikelihoodindexOf

Popular methods of NegLogLikelihood

  • <init>
  • getDimension
  • getInitialPoint
  • gradientAt
    Compute gradient
  • valueAt
    Negative log-likelihood

Popular in Java

  • Making http requests using okhttp
  • onRequestPermissionsResult (Fragment)
  • getSystemService (Context)
  • startActivity (Activity)
  • Selector (java.nio.channels)
    A controller for the selection of SelectableChannel objects. Selectable channels can be registered w
  • Semaphore (java.util.concurrent)
    A counting semaphore. Conceptually, a semaphore maintains a set of permits. Each #acquire blocks if
  • Pattern (java.util.regex)
    A compiled representation of a regular expression. A regular expression, specified as a string, must
  • Collectors (java.util.stream)
  • Filter (javax.servlet)
    A filter is an object that performs filtering tasks on either the request to a resource (a servlet o
  • HttpServletRequest (javax.servlet.http)
    Extends the javax.servlet.ServletRequest interface to provide request information for HTTP servlets.
Codota Logo
  • Products

    Search for Java codeSearch for JavaScript codeEnterprise
  • IDE Plugins

    IntelliJ IDEAWebStormAndroid StudioEclipseVisual Studio CodePyCharmSublime TextPhpStormVimAtomGoLandRubyMineEmacsJupyter
  • Company

    About UsContact UsCareers
  • Resources

    FAQBlogCodota Academy Plugin user guide Terms of usePrivacy policyJava Code IndexJavascript Code Index
Get Codota for your IDE now