[image: Tabnine Logo]PDAppearanceEntry.<init>

Code IndexAdd Tabnine to your IDE (free)

How to use
 org.apache.pdfbox.pdmodel.interactive.annotation.PDAppearanceEntry
constructor

Best Java code snippets using org.apache.pdfbox.pdmodel.interactive.annotation.PDAppearanceEntry.<init> (Showing top 17 results out of 315)
origin: apache/pdfbox

/**
 * This will return a list of appearances. In the case where there is only one appearance the map will contain one
 * entry whose key is the string "default".
 *
 * @return A list of key(java.lang.String) value(PDAppearanceStream) pairs
 */
public PDAppearanceEntry getNormalAppearance()
{
 COSBase entry = dictionary.getDictionaryObject(COSName.N);
 if (entry instanceof COSDictionary)
 {
 return new PDAppearanceEntry((COSDictionary) entry);
 }
 return null;
}

	

origin: apache/pdfbox

/**
 * This will return a list of appearances. In the case where there is only one appearance the map will contain one
 * entry whose key is the string "default". If there is no rollover appearance then the normal appearance will be
 * returned. Which means that this method will never return null.
 *
 * @return A list of key(java.lang.String) value(PDAppearanceStream) pairs
 */
public PDAppearanceEntry getRolloverAppearance()
{
 COSBase entry = dictionary.getDictionaryObject(COSName.R);
 if (entry instanceof COSDictionary)
 {
 return new PDAppearanceEntry((COSDictionary) entry);
 }
 else
 {
 return getNormalAppearance();
 }
}

	

origin: apache/pdfbox

/**
 * This will return a list of appearances. In the case where there is only one appearance the map will contain one
 * entry whose key is the string "default". If there is no rollover appearance then the normal appearance will be
 * returned. Which means that this method will never return null.
 *
 * @return A list of key(java.lang.String) value(PDAppearanceStream) pairs
 */
public PDAppearanceEntry getDownAppearance()
{
 COSBase entry = dictionary.getDictionaryObject(COSName.D);
 if (entry instanceof COSDictionary)
 {
 return new PDAppearanceEntry((COSDictionary) entry);
 }
 else
 {
 return getNormalAppearance();
 }
}

	

origin: apache/pdfbox

/**
 * Get the annotations normal appearance.
 *
 * <p>
 * This will get the annotations normal appearance. If this is not existent
 * an empty appearance entry will be created.
 *
 * @return the appearance entry representing the normal appearance.
 */
private PDAppearanceEntry getNormalAppearance()
{
 PDAppearanceDictionary appearanceDictionary = getAppearance();
 PDAppearanceEntry normalAppearanceEntry = appearanceDictionary.getNormalAppearance();
 if (normalAppearanceEntry.isSubDictionary())
 {
 //TODO replace with "document.getDocument().createCOSStream()"
 normalAppearanceEntry = new PDAppearanceEntry(new COSStream());
 appearanceDictionary.setNormalAppearance(normalAppearanceEntry);
 }
 return normalAppearanceEntry;
}

	

origin: apache/pdfbox

/**
 * Get the annotations rollover appearance.
 *
 * <p>
 * This will get the annotations rollover appearance. If this is not
 * existent an empty appearance entry will be created.
 *
 * @return the appearance entry representing the rollover appearance.
 */
PDAppearanceEntry getRolloverAppearance()
{
 PDAppearanceDictionary appearanceDictionary = getAppearance();
 PDAppearanceEntry rolloverAppearanceEntry = appearanceDictionary.getRolloverAppearance();
 if (rolloverAppearanceEntry.isSubDictionary())
 {
 //TODO replace with "document.getDocument().createCOSStream()"
 rolloverAppearanceEntry = new PDAppearanceEntry(new COSStream());
 appearanceDictionary.setRolloverAppearance(rolloverAppearanceEntry);
 }
 return rolloverAppearanceEntry;
}

	

origin: apache/pdfbox

/**
 * Get the annotations down appearance.
 *
 * <p>
 * This will get the annotations down appearance. If this is not existent an
 * empty appearance entry will be created.
 *
 * @return the appearance entry representing the down appearance.
 */
PDAppearanceEntry getDownAppearance()
{
 PDAppearanceDictionary appearanceDictionary = getAppearance();
 PDAppearanceEntry downAppearanceEntry = appearanceDictionary.getDownAppearance();
 if (downAppearanceEntry.isSubDictionary())
 {
 //TODO replace with "document.getDocument().createCOSStream()"
 downAppearanceEntry = new PDAppearanceEntry(new COSStream());
 appearanceDictionary.setDownAppearance(downAppearanceEntry);
 }
 return downAppearanceEntry;
}

	

origin: apache/pdfbox

PDAppearanceEntry appearanceNEntry = new PDAppearanceEntry(apNDict);
appearance.setNormalAppearance(appearanceNEntry);
widget.setAppearance(appearance);

	

origin: org.apache.pdfbox/pdfbox

/**
 * This will return a list of appearances. In the case where there is only one appearance the map will contain one
 * entry whose key is the string "default".
 *
 * @return A list of key(java.lang.String) value(PDAppearanceStream) pairs
 */
public PDAppearanceEntry getNormalAppearance()
{
 COSBase entry = dictionary.getDictionaryObject(COSName.N);
 if (entry instanceof COSDictionary)
 {
 return new PDAppearanceEntry(entry);
 }
 return null;
}

	

origin: com.github.lafa.pdfbox/pdfbox

/**
 * This will return a list of appearances. In the case where there is only one appearance the map will contain one
 * entry whose key is the string "default".
 *
 * @return A list of key(java.lang.String) value(PDAppearanceStream) pairs
 */
public PDAppearanceEntry getNormalAppearance()
{
 COSBase entry = dictionary.getDictionaryObject(COSName.N);
 if (entry == null)
 {
 return null;
 }
 else
 {
 return new PDAppearanceEntry(entry);
 }
}

	

origin: org.apache.pdfbox/pdfbox

/**
 * This will return a list of appearances. In the case where there is only one appearance the map will contain one
 * entry whose key is the string "default". If there is no rollover appearance then the normal appearance will be
 * returned. Which means that this method will never return null.
 *
 * @return A list of key(java.lang.String) value(PDAppearanceStream) pairs
 */
public PDAppearanceEntry getDownAppearance()
{
 COSBase entry = dictionary.getDictionaryObject(COSName.D);
 if (entry instanceof COSDictionary)
 {
 return new PDAppearanceEntry(entry);
 }
 else
 {
 return getNormalAppearance();
 }
}

	

origin: com.github.lafa.pdfbox/pdfbox

/**
 * This will return a list of appearances. In the case where there is only one appearance the map will contain one
 * entry whose key is the string "default". If there is no rollover appearance then the normal appearance will be
 * returned. Which means that this method will never return null.
 *
 * @return A list of key(java.lang.String) value(PDAppearanceStream) pairs
 */
public PDAppearanceEntry getDownAppearance()
{
 COSBase entry = dictionary.getDictionaryObject(COSName.D);
 if (entry == null)
 {
 return getNormalAppearance();
 }
 else
 {
 return new PDAppearanceEntry(entry);
 }
}

	

origin: org.apache.pdfbox/pdfbox

/**
 * This will return a list of appearances. In the case where there is only one appearance the map will contain one
 * entry whose key is the string "default". If there is no rollover appearance then the normal appearance will be
 * returned. Which means that this method will never return null.
 *
 * @return A list of key(java.lang.String) value(PDAppearanceStream) pairs
 */
public PDAppearanceEntry getRolloverAppearance()
{
 COSBase entry = dictionary.getDictionaryObject(COSName.R);
 if (entry instanceof COSDictionary)
 {
 return new PDAppearanceEntry(entry);
 }
 else
 {
 return getNormalAppearance();
 }
}

	

origin: com.github.lafa.pdfbox/pdfbox

/**
 * This will return a list of appearances. In the case where there is only one appearance the map will contain one
 * entry whose key is the string "default". If there is no rollover appearance then the normal appearance will be
 * returned. Which means that this method will never return null.
 *
 * @return A list of key(java.lang.String) value(PDAppearanceStream) pairs
 */
public PDAppearanceEntry getRolloverAppearance()
{
 COSBase entry = dictionary.getDictionaryObject(COSName.R);
 if (entry == null)
 {
 return getNormalAppearance();
 }
 else
 {
 return new PDAppearanceEntry(entry);
 }
}

	

origin: org.verapdf/pdfbox-validation-model

private void addContentStreamsFromAppearanceEntry(COSBase appearanceEntry, List<PDContentStream> appearances) {
 if (appearanceEntry != null) {
 PDAppearanceEntry newAppearance = new PDAppearanceEntry(appearanceEntry);
 if (newAppearance.isStream()) {
 addAppearance(appearances, newAppearance.getAppearanceStream());
 } else {
 Map<COSName, PDAppearanceStream> subDictionary = newAppearance.getSubDictionary();
 for (PDAppearanceStream stream : subDictionary.values()) {
 addAppearance(appearances, stream);
 }
 }
 }
}

	

origin: com.github.lafa.pdfbox/pdfbox

/**
 * Get the annotations rollover appearance.
 *
 * <p>
 * This will get the annotations rollover appearance. If this is not
 * existent an empty appearance entry will be created.
 *
 * @return the appearance entry representing the rollover appearance.
 */
PDAppearanceEntry getRolloverAppearance()
{
 PDAppearanceDictionary appearanceDictionary = getAppearance();
 PDAppearanceEntry appearanceEntry = appearanceDictionary.getRolloverAppearance();
 if (appearanceEntry.isSubDictionary())
 {
 appearanceEntry = new PDAppearanceEntry(new COSStream());
 appearanceDictionary.setRolloverAppearance(appearanceEntry);
 }
 return appearanceEntry;
}

	

origin: com.github.lafa.pdfbox/pdfbox

/**
 * Get the annotations down appearance.
 *
 * <p>
 * This will get the annotations down appearance. If this is not existent an
 * empty appearance entry will be created.
 *
 * @return the appearance entry representing the down appearance.
 */
PDAppearanceEntry getDownAppearance()
{
 PDAppearanceDictionary appearanceDictionary = getAppearance();
 PDAppearanceEntry appearanceEntry = appearanceDictionary.getDownAppearance();
 if (appearanceEntry.isSubDictionary())
 {
 appearanceEntry = new PDAppearanceEntry(new COSStream());
 appearanceDictionary.setDownAppearance(appearanceEntry);
 }
 return appearanceEntry;
}

	

origin: com.github.lafa.pdfbox/pdfbox

/**
 * Get the annotations normal appearance.
 *
 * <p>
 * This will get the annotations normal appearance. If this is not existent
 * an empty appearance entry will be created.
 *
 * @return the appearance entry representing the normal appearance.
 */
private PDAppearanceEntry getNormalAppearance()
{
 PDAppearanceDictionary appearanceDictionary = getAppearance();
 PDAppearanceEntry appearanceEntry = appearanceDictionary.getNormalAppearance();
 if (appearanceEntry.isSubDictionary())
 {
 appearanceEntry = new PDAppearanceEntry(new COSStream());
 appearanceDictionary.setNormalAppearance(appearanceEntry);
 }
 return appearanceEntry;
}

	

org.apache.pdfbox.pdmodel.interactive.annotationPDAppearanceEntry<init>Javadoc
Constructor for reading.

Popular methods of PDAppearanceEntry
	getAppearanceStreamReturns the entry as an appearance stream.

	getCOSObject
	getSubDictionaryReturns the entry as an appearance subdictionary.

	isStreamReturns true if this entry is an appearance stream.

	isSubDictionaryReturns true if this entry is an appearance subdictionary.

Popular in Java
	Reading from database using SQL prepared statement
	scheduleAtFixedRate (Timer)
	getOriginalFilename (MultipartFile)Return the original filename in the client's filesystem.This may contain path
information depending

	getResourceAsStream (ClassLoader)
	Hashtable (java.util)A plug-in replacement for JDK1.5 java.util.Hashtable. This version is based on
org.cliffc.high_scale

	NoSuchElementException (java.util)Thrown when trying to retrieve an element past the end of an Enumeration or
Iterator.

	TimeZone (java.util)TimeZone represents a time zone offset, and also figures out daylight savings.
Typically, you get a

	TreeMap (java.util)Walk the nodes of the tree left-to-right or right-to-left. Note that in
descending iterations, next

	ThreadPoolExecutor (java.util.concurrent)An ExecutorService that executes each submitted task using one of possibly
several pooled threads, n

	ReentrantLock (java.util.concurrent.locks)A reentrant mutual exclusion Lock with the same basic behavior and semantics as
the implicit monitor

	From CI to AI: The AI layer in your organization

[image: Tabnine Logo]	Products
Search for Java codeSearch for JavaScript code
	IDE Plugins
IntelliJ IDEAWebStormVisual StudioAndroid StudioEclipseVisual Studio CodePyCharmSublime TextPhpStormVimGoLandRubyMineEmacsJupyter NotebookJupyter LabRiderDataGripAppCode
	Company
About UsContact UsCareers
	Resources
FAQBlogTabnine AcademyTerms of usePrivacy policyJava Code IndexJavascript Code Index

Get Tabnine for your IDE now

