Codota Logo
DataIndexer.getNumTimesEventsSeen
Code IndexAdd Codota to your IDE (free)

How to use
getNumTimesEventsSeen
method
in
opennlp.tools.ml.model.DataIndexer

Best Java code snippets using opennlp.tools.ml.model.DataIndexer.getNumTimesEventsSeen (Showing top 19 results out of 315)

  • Common ways to obtain DataIndexer
private void myMethod () {
DataIndexer d =
  • Codota Iconnew OnePassDataIndexer()
  • Codota IconTrainingParameters parameters;Map reportMap;DataIndexerFactory.getDataIndexer(parameters, reportMap)
  • Smart code suggestions by Codota
}
origin: apache/opennlp

public NegLogLikelihood(DataIndexer indexer) {
 // Get data from indexer.
 if (indexer instanceof OnePassRealValueDataIndexer) {
  this.values = indexer.getValues();
 } else {
  this.values = null;
 }
 this.contexts    = indexer.getContexts();
 this.outcomeList = indexer.getOutcomeList();
 this.numTimesEventsSeen = indexer.getNumTimesEventsSeen();
 this.numOutcomes = indexer.getOutcomeLabels().length;
 this.numFeatures = indexer.getPredLabels().length;
 this.numContexts = this.contexts.length;
 this.dimension   = numOutcomes * numFeatures;
 this.expectation = new double[numOutcomes];
 this.tempSums    = new double[numOutcomes];
 this.gradient    = new double[dimension];
}
origin: apache/opennlp

 /**
  * Evaluate the current model on training data set
  * @return model's training accuracy
  */
 @Override
 public double evaluate(double[] parameters) {
  int[][] contexts  = indexer.getContexts();
  float[][] values  = indexer.getValues();
  int[] nEventsSeen = indexer.getNumTimesEventsSeen();
  int[] outcomeList = indexer.getOutcomeList();
  int nOutcomes     = indexer.getOutcomeLabels().length;
  int nPredLabels   = indexer.getPredLabels().length;
  int nCorrect     = 0;
  int nTotalEvents = 0;
  for (int ei = 0; ei < contexts.length; ei++) {
   int[] context  = contexts[ei];
   float[] value  = values == null ? null : values[ei];
   double[] probs = new double[nOutcomes];
   QNModel.eval(context, value, probs, nOutcomes, nPredLabels, parameters);
   int outcome = ArrayMath.argmax(probs);
   if (outcome == outcomeList[ei]) {
    nCorrect += nEventsSeen[ei];
   }
   nTotalEvents += nEventsSeen[ei];
  }
  return (double) nCorrect / nTotalEvents;
 }
}
origin: apache/opennlp

public AbstractModel trainModel(DataIndexer di) {
 display("Incorporating indexed data for training...  \n");
 contexts = di.getContexts();
 values = di.getValues();
 numTimesEventsSeen = di.getNumTimesEventsSeen();
 numEvents = di.getNumEvents();
 numUniqueEvents = contexts.length;
 outcomeLabels = di.getOutcomeLabels();
 outcomeList = di.getOutcomeList();
 predLabels = di.getPredLabels();
 numPreds = predLabels.length;
 numOutcomes = outcomeLabels.length;
 display("done.\n");
 display("\tNumber of Event Tokens: " + numUniqueEvents + "\n");
 display("\t    Number of Outcomes: " + numOutcomes + "\n");
 display("\t  Number of Predicates: " + numPreds + "\n");
 display("Computing model parameters...\n");
 MutableContext[] finalParameters = findParameters();
 display("...done.\n");
 /* Create and return the model ****/
 return new NaiveBayesModel(finalParameters, predLabels, outcomeLabels);
}
origin: apache/opennlp

public AbstractModel trainModel(int iterations, DataIndexer di, int cutoff, boolean useAverage) {
 display("Incorporating indexed data for training...  \n");
 contexts = di.getContexts();
 values = di.getValues();
 numTimesEventsSeen = di.getNumTimesEventsSeen();
 numEvents = di.getNumEvents();
 numUniqueEvents = contexts.length;
 outcomeLabels = di.getOutcomeLabels();
 outcomeList = di.getOutcomeList();
 predLabels = di.getPredLabels();
 numPreds = predLabels.length;
 numOutcomes = outcomeLabels.length;
 display("done.\n");
 display("\tNumber of Event Tokens: " + numUniqueEvents + "\n");
 display("\t    Number of Outcomes: " + numOutcomes + "\n");
 display("\t  Number of Predicates: " + numPreds + "\n");
 display("Computing model parameters...\n");
 MutableContext[] finalParameters = findParameters(iterations, useAverage);
 display("...done.\n");
 /* Create and return the model *************/
 return new PerceptronModel(finalParameters, predLabels, outcomeLabels);
}
origin: apache/opennlp

numTimesEventsSeen = di.getNumTimesEventsSeen();
numUniqueEvents = contexts.length;
this.prior = modelPrior;
origin: ai.idylnlp/idylnlp-opennlp-tools-1.8.3

public NegLogLikelihood(DataIndexer indexer) {
 // Get data from indexer.
 if (indexer instanceof OnePassRealValueDataIndexer) {
  this.values = indexer.getValues();
 } else {
  this.values = null;
 }
 this.contexts    = indexer.getContexts();
 this.outcomeList = indexer.getOutcomeList();
 this.numTimesEventsSeen = indexer.getNumTimesEventsSeen();
 this.numOutcomes = indexer.getOutcomeLabels().length;
 this.numFeatures = indexer.getPredLabels().length;
 this.numContexts = this.contexts.length;
 this.dimension   = numOutcomes * numFeatures;
 this.expectation = new double[numOutcomes];
 this.tempSums    = new double[numOutcomes];
 this.gradient    = new double[dimension];
}
origin: apache/opennlp

Assert.assertEquals(5, indexer.getNumEvents());
Assert.assertArrayEquals(new int[]{0, 1, 2}, indexer.getOutcomeList());
Assert.assertArrayEquals(new int[]{3, 1, 1}, indexer.getNumTimesEventsSeen());
Assert.assertArrayEquals(new String[]{"ppo=other"}, indexer.getPredLabels());
Assert.assertArrayEquals(new String[]{"other", "org-start", "org-cont"}, indexer.getOutcomeLabels());
origin: apache/opennlp

Assert.assertEquals(5, indexer.getNumEvents());
Assert.assertArrayEquals(new int[]{0, 1, 2}, indexer.getOutcomeList());
Assert.assertArrayEquals(new int[]{3, 1, 1}, indexer.getNumTimesEventsSeen());
Assert.assertArrayEquals(new String[]{"ppo=other"}, indexer.getPredLabels());
Assert.assertArrayEquals(new String[]{"other", "org-start", "org-cont"}, indexer.getOutcomeLabels());
origin: org.apache.opennlp/opennlp-tools

public NegLogLikelihood(DataIndexer indexer) {
 // Get data from indexer.
 if (indexer instanceof OnePassRealValueDataIndexer) {
  this.values = indexer.getValues();
 } else {
  this.values = null;
 }
 this.contexts    = indexer.getContexts();
 this.outcomeList = indexer.getOutcomeList();
 this.numTimesEventsSeen = indexer.getNumTimesEventsSeen();
 this.numOutcomes = indexer.getOutcomeLabels().length;
 this.numFeatures = indexer.getPredLabels().length;
 this.numContexts = this.contexts.length;
 this.dimension   = numOutcomes * numFeatures;
 this.expectation = new double[numOutcomes];
 this.tempSums    = new double[numOutcomes];
 this.gradient    = new double[dimension];
}
origin: apache/opennlp

Assert.assertEquals(5, indexer.getNumEvents());
Assert.assertArrayEquals(new int[]{0, 1, 2}, indexer.getOutcomeList());
Assert.assertArrayEquals(new int[]{3, 1, 1}, indexer.getNumTimesEventsSeen());
Assert.assertArrayEquals(new String[]{"ppo=other"}, indexer.getPredLabels());
Assert.assertArrayEquals(new String[]{"other", "org-start", "org-cont"}, indexer.getOutcomeLabels());
origin: org.apache.opennlp/opennlp-tools

 /**
  * Evaluate the current model on training data set
  * @return model's training accuracy
  */
 @Override
 public double evaluate(double[] parameters) {
  int[][] contexts  = indexer.getContexts();
  float[][] values  = indexer.getValues();
  int[] nEventsSeen = indexer.getNumTimesEventsSeen();
  int[] outcomeList = indexer.getOutcomeList();
  int nOutcomes     = indexer.getOutcomeLabels().length;
  int nPredLabels   = indexer.getPredLabels().length;
  int nCorrect     = 0;
  int nTotalEvents = 0;
  for (int ei = 0; ei < contexts.length; ei++) {
   int[] context  = contexts[ei];
   float[] value  = values == null ? null : values[ei];
   double[] probs = new double[nOutcomes];
   QNModel.eval(context, value, probs, nOutcomes, nPredLabels, parameters);
   int outcome = ArrayMath.argmax(probs);
   if (outcome == outcomeList[ei]) {
    nCorrect += nEventsSeen[ei];
   }
   nTotalEvents += nEventsSeen[ei];
  }
  return (double) nCorrect / nTotalEvents;
 }
}
origin: apache/opennlp

Assert.assertEquals(5, indexer.getNumEvents());
Assert.assertArrayEquals(new int[]{0, 1, 2}, indexer.getOutcomeList());
Assert.assertArrayEquals(new int[]{3, 1, 1}, indexer.getNumTimesEventsSeen());
Assert.assertArrayEquals(new String[]{"ppo=other"}, indexer.getPredLabels());
Assert.assertArrayEquals(new String[]{"other", "org-start", "org-cont"}, indexer.getOutcomeLabels());
origin: ai.idylnlp/idylnlp-opennlp-tools-1.8.3

 /**
  * Evaluate the current model on training data set
  * @return model's training accuracy
  */
 @Override
 public double evaluate(double[] parameters) {
  int[][] contexts  = indexer.getContexts();
  float[][] values  = indexer.getValues();
  int[] nEventsSeen = indexer.getNumTimesEventsSeen();
  int[] outcomeList = indexer.getOutcomeList();
  int nOutcomes     = indexer.getOutcomeLabels().length;
  int nPredLabels   = indexer.getPredLabels().length;
  int nCorrect     = 0;
  int nTotalEvents = 0;
  for (int ei = 0; ei < contexts.length; ei++) {
   int[] context  = contexts[ei];
   float[] value  = values == null ? null : values[ei];
   double[] probs = new double[nOutcomes];
   QNModel.eval(context, value, probs, nOutcomes, nPredLabels, parameters);
   int outcome = ArrayMath.maxIdx(probs);
   if (outcome == outcomeList[ei]) {
    nCorrect += nEventsSeen[ei];
   }
   nTotalEvents += nEventsSeen[ei];
  }
  return (double) nCorrect / nTotalEvents;
 }
}
origin: org.apache.opennlp/opennlp-tools

public AbstractModel trainModel(int iterations, DataIndexer di, int cutoff, boolean useAverage) {
 display("Incorporating indexed data for training...  \n");
 contexts = di.getContexts();
 values = di.getValues();
 numTimesEventsSeen = di.getNumTimesEventsSeen();
 numEvents = di.getNumEvents();
 numUniqueEvents = contexts.length;
 outcomeLabels = di.getOutcomeLabels();
 outcomeList = di.getOutcomeList();
 predLabels = di.getPredLabels();
 numPreds = predLabels.length;
 numOutcomes = outcomeLabels.length;
 display("done.\n");
 display("\tNumber of Event Tokens: " + numUniqueEvents + "\n");
 display("\t    Number of Outcomes: " + numOutcomes + "\n");
 display("\t  Number of Predicates: " + numPreds + "\n");
 display("Computing model parameters...\n");
 MutableContext[] finalParameters = findParameters(iterations, useAverage);
 display("...done.\n");
 /* Create and return the model *************/
 return new PerceptronModel(finalParameters, predLabels, outcomeLabels);
}
origin: org.apache.opennlp/opennlp-tools

public AbstractModel trainModel(DataIndexer di) {
 display("Incorporating indexed data for training...  \n");
 contexts = di.getContexts();
 values = di.getValues();
 numTimesEventsSeen = di.getNumTimesEventsSeen();
 numEvents = di.getNumEvents();
 numUniqueEvents = contexts.length;
 outcomeLabels = di.getOutcomeLabels();
 outcomeList = di.getOutcomeList();
 predLabels = di.getPredLabels();
 numPreds = predLabels.length;
 numOutcomes = outcomeLabels.length;
 display("done.\n");
 display("\tNumber of Event Tokens: " + numUniqueEvents + "\n");
 display("\t    Number of Outcomes: " + numOutcomes + "\n");
 display("\t  Number of Predicates: " + numPreds + "\n");
 display("Computing model parameters...\n");
 MutableContext[] finalParameters = findParameters();
 display("...done.\n");
 /* Create and return the model ****/
 return new NaiveBayesModel(finalParameters, predLabels, outcomeLabels);
}
origin: ai.idylnlp/idylnlp-opennlp-tools-1.8.3

public AbstractModel trainModel(int iterations, DataIndexer di, int cutoff, boolean useAverage) {
 display("Incorporating indexed data for training...  \n");
 contexts = di.getContexts();
 values = di.getValues();
 numTimesEventsSeen = di.getNumTimesEventsSeen();
 numEvents = di.getNumEvents();
 numUniqueEvents = contexts.length;
 outcomeLabels = di.getOutcomeLabels();
 outcomeList = di.getOutcomeList();
 predLabels = di.getPredLabels();
 numPreds = predLabels.length;
 numOutcomes = outcomeLabels.length;
 display("done.\n");
 display("\tNumber of Event Tokens: " + numUniqueEvents + "\n");
 display("\t    Number of Outcomes: " + numOutcomes + "\n");
 display("\t  Number of Predicates: " + numPreds + "\n");
 display("Computing model parameters...\n");
 MutableContext[] finalParameters = findParameters(iterations, useAverage);
 display("...done.\n");
 /* Create and return the model *************/
 return new PerceptronModel(finalParameters, predLabels, outcomeLabels);
}
origin: ai.idylnlp/idylnlp-opennlp-tools-1.8.3

public AbstractModel trainModel(DataIndexer di) {
 display("Incorporating indexed data for training...  \n");
 contexts = di.getContexts();
 values = di.getValues();
 numTimesEventsSeen = di.getNumTimesEventsSeen();
 numEvents = di.getNumEvents();
 numUniqueEvents = contexts.length;
 outcomeLabels = di.getOutcomeLabels();
 outcomeList = di.getOutcomeList();
 predLabels = di.getPredLabels();
 numPreds = predLabels.length;
 numOutcomes = outcomeLabels.length;
 display("done.\n");
 display("\tNumber of Event Tokens: " + numUniqueEvents + "\n");
 display("\t    Number of Outcomes: " + numOutcomes + "\n");
 display("\t  Number of Predicates: " + numPreds + "\n");
 display("Computing model parameters...\n");
 MutableContext[] finalParameters = findParameters();
 display("...done.\n");
 /* Create and return the model ****/
 return new NaiveBayesModel(finalParameters, predLabels, outcomeLabels);
}
origin: org.apache.opennlp/opennlp-tools

numTimesEventsSeen = di.getNumTimesEventsSeen();
numUniqueEvents = contexts.length;
this.prior = modelPrior;
origin: ai.idylnlp/idylnlp-opennlp-tools-1.8.3

numTimesEventsSeen = di.getNumTimesEventsSeen();
numUniqueEvents = contexts.length;
this.prior = modelPrior;
opennlp.tools.ml.modelDataIndexergetNumTimesEventsSeen

Javadoc

Returns an array indicating the number of times a particular event was seen.

Popular methods of DataIndexer

  • getContexts
    Returns the array of predicates seen in each event.
  • getNumEvents
    Returns the number of total events indexed.
  • getOutcomeLabels
    Returns an array of outcome names.
  • getOutcomeList
    Returns an array indicating the outcome index for each event.
  • getPredCounts
    Returns an array of the count of each predicate in the events.
  • getPredLabels
    Returns an array of predicate/context names.
  • getValues
    Returns the values associated with each event context or null if integer values are to be used.
  • index
    Performs the data indexing. Make sure the init(...) method is called first.
  • init
    Sets parameters used during the data indexing.

Popular in Java

  • Reactive rest calls using spring rest template
  • findViewById (Activity)
  • getContentResolver (Context)
  • compareTo (BigDecimal)
    Compares this BigDecimal with the specified BigDecimal. Two BigDecimal objects that are equal in val
  • Color (java.awt)
    The Color class is used encapsulate colors in the default sRGB color space or colors in arbitrary co
  • Component (java.awt)
    A component is an object having a graphical representation that can be displayed on the screen and t
  • IOException (java.io)
    Signals that an I/O exception of some sort has occurred. This class is the general class of exceptio
  • BigInteger (java.math)
    Immutable arbitrary-precision integers. All operations behave as if BigIntegers were represented in
  • SortedMap (java.util)
    A map that has its keys ordered. The sorting is according to either the natural ordering of its keys
  • Servlet (javax.servlet)
    Defines methods that all servlets must implement.A servlet is a small Java program that runs within
Codota Logo
  • Products

    Search for Java codeSearch for JavaScript codeEnterprise
  • IDE Plugins

    IntelliJ IDEAWebStormAndroid StudioEclipseVisual Studio CodePyCharmSublime TextPhpStormVimAtomGoLandRubyMineEmacsJupyter
  • Company

    About UsContact UsCareers
  • Resources

    FAQBlogCodota Academy Plugin user guide Terms of usePrivacy policyJava Code IndexJavascript Code Index
Get Codota for your IDE now