Codota Logo
JCublas.cublasSetMatrixNative
Code IndexAdd Codota to your IDE (free)

How to use
cublasSetMatrixNative
method
in
jcuda.jcublas.JCublas

Best Java code snippets using jcuda.jcublas.JCublas.cublasSetMatrixNative (Showing top 18 results out of 315)

  • Add the Codota plugin to your IDE and get smart completions
private void myMethod () {
Gson g =
  • Codota Iconnew Gson()
  • Codota IconGsonBuilder gsonBuilder;gsonBuilder.create()
  • Codota Iconnew GsonBuilder().create()
  • Smart code suggestions by Codota
}
origin: org.nd4j/jcublas-osx

/**
 * Wrapper for CUBLAS function.<br />
 * <br />
 * cublasStatus
 * cublasSetMatrix (int rows, int cols, int elemSize, const void *A,
 *                  int lda, void *B, int ldb)<br />
 *<br />
 * copies a tile of rows x cols elements from a matrix A in CPU memory
 * space to a matrix B in GPU memory space. Each element requires storage
 * of elemSize bytes. Both matrices are assumed to be stored in column
 * major format, with the leading dimension (i.e. number of rows) of
 * source matrix A provided in lda, and the leading dimension of matrix B
 * provided in ldb. In general, B points to an object, or part of an
 * object, that was allocated via cublasAlloc().<br />
 *<br />
 * Return Values<br />
 * -------------<br />
 * CUBLAS_STATUS_NOT_INITIALIZED  if CUBLAS library has not been initialized<br />
 * CUBLAS_STATUS_INVALID_VALUE    if rows or cols < 0, or elemSize, lda, or
 *                                ldb <= 0<br />
 * CUBLAS_STATUS_MAPPING_ERROR    if error occurred accessing GPU memory<br />
 * CUBLAS_STATUS_SUCCESS          if the operation completed successfully<br />
 */
public static int cublasSetMatrix (int rows, int cols, int elemSize, Pointer A, int lda, Pointer B, int ldb)
{
  return checkResult(cublasSetMatrixNative(rows, elemSize, cols, A, lda, B, ldb));
}
origin: org.nd4j/nd4j-jcublas-common

/**
 * Wrapper for CUBLAS function.<br />
 * <br />
 * cublasStatus
 * cublasSetMatrix (int rows, int cols, int elemSize, const void *A,
 *                  int lda, void *B, int ldb)<br />
 *<br />
 * copies a tile of rows x cols elements from a matrix A in CPU memory
 * space to a matrix B in GPU memory space. Each element requires storage
 * of elemSize bytes. Both matrices are assumed to be stored in column
 * major format, with the leading dimension (i.e. number of rows) of
 * source matrix A provided in lda, and the leading dimension of matrix B
 * provided in ldb. In general, B points to an object, or part of an
 * object, that was allocated via cublasAlloc().<br />
 *<br />
 * Return Values<br />
 * -------------<br />
 * CUBLAS_STATUS_NOT_INITIALIZED  if CUBLAS library has not been initialized<br />
 * CUBLAS_STATUS_INVALID_VALUE    if rows or cols < 0, or elemSize, lda, or
 *                                ldb <= 0<br />
 * CUBLAS_STATUS_MAPPING_ERROR    if error occurred accessing GPU memory<br />
 * CUBLAS_STATUS_SUCCESS          if the operation completed successfully<br />
 */
public static int cublasSetMatrix (int rows, int cols, int elemSize, Pointer A, int lda, Pointer B, int ldb)
{
  return checkResult(cublasSetMatrixNative(rows, elemSize, cols, A, lda, B, ldb));
}
origin: org.jcuda/jcublas

/**
 * Wrapper for CUBLAS function.<br />
 * <br />
 * cublasStatus
 * cublasSetMatrix (int rows, int cols, int elemSize, const void *A,
 *                  int lda, void *B, int ldb)<br />
 *<br />
 * copies a tile of rows x cols elements from a matrix A in CPU memory
 * space to a matrix B in GPU memory space. Each element requires storage
 * of elemSize bytes. Both matrices are assumed to be stored in column
 * major format, with the leading dimension (i.e. number of rows) of
 * source matrix A provided in lda, and the leading dimension of matrix B
 * provided in ldb. In general, B points to an object, or part of an
 * object, that was allocated via cublasAlloc().<br />
 *<br />
 * Return Values<br />
 * -------------<br />
 * CUBLAS_STATUS_NOT_INITIALIZED  if CUBLAS library has not been initialized<br />
 * CUBLAS_STATUS_INVALID_VALUE    if rows or cols < 0, or elemSize, lda, or
 *                                ldb <= 0<br />
 * CUBLAS_STATUS_MAPPING_ERROR    if error occurred accessing GPU memory<br />
 * CUBLAS_STATUS_SUCCESS          if the operation completed successfully<br />
 */
public static int cublasSetMatrix (int rows, int cols, int elemSize, Pointer A, int lda, Pointer B, int ldb)
{
  return checkResult(cublasSetMatrixNative(rows, elemSize, cols, A, lda, B, ldb));
}
origin: org.nd4j/jcublas

/**
 * Wrapper for CUBLAS function.<br />
 * <br />
 * cublasStatus
 * cublasSetMatrix (int rows, int cols, int elemSize, const void *A,
 *                  int lda, void *B, int ldb)<br />
 *<br />
 * copies a tile of rows x cols elements from a matrix A in CPU memory
 * space to a matrix B in GPU memory space. Each element requires storage
 * of elemSize bytes. Both matrices are assumed to be stored in column
 * major format, with the leading dimension (i.e. number of rows) of
 * source matrix A provided in lda, and the leading dimension of matrix B
 * provided in ldb. In general, B points to an object, or part of an
 * object, that was allocated via cublasAlloc().<br />
 *<br />
 * Return Values<br />
 * -------------<br />
 * CUBLAS_STATUS_NOT_INITIALIZED  if CUBLAS library has not been initialized<br />
 * CUBLAS_STATUS_INVALID_VALUE    if rows or cols < 0, or elemSize, lda, or
 *                                ldb <= 0<br />
 * CUBLAS_STATUS_MAPPING_ERROR    if error occurred accessing GPU memory<br />
 * CUBLAS_STATUS_SUCCESS          if the operation completed successfully<br />
 */
public static int cublasSetMatrix (int rows, int cols, int elemSize, Pointer A, int lda, Pointer B, int ldb)
{
  return checkResult(cublasSetMatrixNative(rows, elemSize, cols, A, lda, B, ldb));
}
origin: org.scalanlp/jcublas

/**
 * Wrapper for CUBLAS function.<br />
 * <br />
 * cublasStatus
 * cublasSetMatrix (int rows, int cols, int elemSize, const void *A,
 *                  int lda, void *B, int ldb)<br />
 *<br />
 * copies a tile of rows x cols elements from a matrix A in CPU memory
 * space to a matrix B in GPU memory space. Each element requires storage
 * of elemSize bytes. Both matrices are assumed to be stored in column
 * major format, with the leading dimension (i.e. number of rows) of
 * source matrix A provided in lda, and the leading dimension of matrix B
 * provided in ldb. In general, B points to an object, or part of an
 * object, that was allocated via cublasAlloc().<br />
 *<br />
 * Return Values<br />
 * -------------<br />
 * CUBLAS_STATUS_NOT_INITIALIZED  if CUBLAS library has not been initialized<br />
 * CUBLAS_STATUS_INVALID_VALUE    if rows or cols < 0, or elemSize, lda, or
 *                                ldb <= 0<br />
 * CUBLAS_STATUS_MAPPING_ERROR    if error occurred accessing GPU memory<br />
 * CUBLAS_STATUS_SUCCESS          if the operation completed successfully<br />
 */
public static int cublasSetMatrix (int rows, int cols, int elemSize, Pointer A, int lda, Pointer B, int ldb)
{
 return checkResult(cublasSetMatrixNative(rows, elemSize, cols, A, lda, B, ldb));
}
origin: org.nd4j/jcublas-windows64

/**
 * Wrapper for CUBLAS function.<br />
 * <br />
 * cublasStatus
 * cublasSetMatrix (int rows, int cols, int elemSize, const void *A,
 *                  int lda, void *B, int ldb)<br />
 *<br />
 * copies a tile of rows x cols elements from a matrix A in CPU memory
 * space to a matrix B in GPU memory space. Each element requires storage
 * of elemSize bytes. Both matrices are assumed to be stored in column
 * major format, with the leading dimension (i.e. number of rows) of
 * source matrix A provided in lda, and the leading dimension of matrix B
 * provided in ldb. In general, B points to an object, or part of an
 * object, that was allocated via cublasAlloc().<br />
 *<br />
 * Return Values<br />
 * -------------<br />
 * CUBLAS_STATUS_NOT_INITIALIZED  if CUBLAS library has not been initialized<br />
 * CUBLAS_STATUS_INVALID_VALUE    if rows or cols < 0, or elemSize, lda, or
 *                                ldb <= 0<br />
 * CUBLAS_STATUS_MAPPING_ERROR    if error occurred accessing GPU memory<br />
 * CUBLAS_STATUS_SUCCESS          if the operation completed successfully<br />
 */
public static int cublasSetMatrix (int rows, int cols, int elemSize, Pointer A, int lda, Pointer B, int ldb)
{
  return checkResult(cublasSetMatrixNative(rows, elemSize, cols, A, lda, B, ldb));
}
origin: org.scalanlp/jcublas

/**
 * Extended wrapper for arrays of cuComplex values. Note that this method
 * only exists for convenience and compatibility with native C code. It
 * is much more efficient to provide a Pointer to a float array containing
 * the complex numbers, where each pair of consecutive numbers in the array
 * describes the real- and imaginary part of one complex number.
 *
 * @see JCublas#cublasSetMatrix(int, int, int, Pointer, int, Pointer, int)
 */
public static int cublasSetMatrix (int rows, int cols, cuComplex A[], int offsetA, int lda, Pointer B, int ldb)
{
 ByteBuffer byteBufferA = ByteBuffer.allocateDirect(A.length * 4 * 2);
 byteBufferA.order(ByteOrder.nativeOrder());
 FloatBuffer floatBufferA = byteBufferA.asFloatBuffer();
 for (int i=0; i<A.length; i++)
 {
  floatBufferA.put(A[i].x);
  floatBufferA.put(A[i].y);
 }
 return checkResult(cublasSetMatrixNative(rows, cols, 8, Pointer.to(floatBufferA).withByteOffset(offsetA * 4 * 2), lda, B, ldb));
}
origin: org.nd4j/jcublas

/**
 * Extended wrapper for arrays of cuComplex values. Note that this method
 * only exists for convenience and compatibility with native C code. It
 * is much more efficient to provide a Pointer to a float array containing
 * the complex numbers, where each pair of consecutive numbers in the array
 * describes the real- and imaginary part of one complex number.
 *
 * @see JCublas#cublasSetMatrix(int, int, int, Pointer, int, Pointer, int)
 */
public static int cublasSetMatrix (int rows, int cols, cuComplex A[], int offsetA, int lda, Pointer B, int ldb)
{
  ByteBuffer byteBufferA = ByteBuffer.allocateDirect(A.length * 4 * 2);
  byteBufferA.order(ByteOrder.nativeOrder());
  FloatBuffer floatBufferA = byteBufferA.asFloatBuffer();
  for (int i=0; i<A.length; i++)
  {
    floatBufferA.put(A[i].x);
    floatBufferA.put(A[i].y);
  }
  return checkResult(cublasSetMatrixNative(rows, cols, 8, Pointer.to(floatBufferA).withByteOffset(offsetA * 4 * 2), lda, B, ldb));
}
origin: org.nd4j/jcublas-windows64

/**
 * Extended wrapper for arrays of cuComplex values. Note that this method
 * only exists for convenience and compatibility with native C code. It
 * is much more efficient to provide a Pointer to a float array containing
 * the complex numbers, where each pair of consecutive numbers in the array
 * describes the real- and imaginary part of one complex number.
 *
 * @see jcuda.jcublas.JCublas#cublasSetMatrix(int, int, int, jcuda.Pointer, int, jcuda.Pointer, int)
 */
public static int cublasSetMatrix (int rows, int cols, cuComplex A[], int offsetA, int lda, Pointer B, int ldb)
{
  ByteBuffer byteBufferA = ByteBuffer.allocateDirect(A.length * 4 * 2);
  byteBufferA.order(ByteOrder.nativeOrder());
  FloatBuffer floatBufferA = byteBufferA.asFloatBuffer();
  for (int i=0; i<A.length; i++)
  {
    floatBufferA.put(A[i].x);
    floatBufferA.put(A[i].y);
  }
  return checkResult(cublasSetMatrixNative(rows, cols, 8, Pointer.to(floatBufferA).withByteOffset(offsetA * 4 * 2), lda, B, ldb));
}
origin: org.nd4j/nd4j-jcublas-common

/**
 * Extended wrapper for arrays of cuComplex values. Note that this method
 * only exists for convenience and compatibility with native C code. It
 * is much more efficient to provide a Pointer to a float array containing
 * the complex numbers, where each pair of consecutive numbers in the array
 * describes the real- and imaginary part of one complex number.
 *
 * @see JCublas#cublasSetMatrix(int, int, int, Pointer, int, Pointer, int)
 */
public static int cublasSetMatrix (int rows, int cols, cuComplex A[], int offsetA, int lda, Pointer B, int ldb)
{
  ByteBuffer byteBufferA = ByteBuffer.allocateDirect(A.length * 4 * 2);
  byteBufferA.order(ByteOrder.nativeOrder());
  FloatBuffer floatBufferA = byteBufferA.asFloatBuffer();
  for (int i=0; i<A.length; i++)
  {
    floatBufferA.put(A[i].x);
    floatBufferA.put(A[i].y);
  }
  return checkResult(cublasSetMatrixNative(rows, cols, 8, Pointer.to(floatBufferA).withByteOffset(offsetA * 4 * 2), lda, B, ldb));
}
origin: org.jcuda/jcublas

/**
 * Extended wrapper for arrays of cuComplex values. Note that this method
 * only exists for convenience and compatibility with native C code. It
 * is much more efficient to provide a Pointer to a float array containing
 * the complex numbers, where each pair of consecutive numbers in the array
 * describes the real- and imaginary part of one complex number.
 *
 * @see JCublas#cublasSetMatrix(int, int, int, Pointer, int, Pointer, int)
 */
public static int cublasSetMatrix (int rows, int cols, cuComplex A[], int offsetA, int lda, Pointer B, int ldb)
{
  ByteBuffer byteBufferA = ByteBuffer.allocateDirect(A.length * 4 * 2);
  byteBufferA.order(ByteOrder.nativeOrder());
  FloatBuffer floatBufferA = byteBufferA.asFloatBuffer();
  for (int i=0; i<A.length; i++)
  {
    floatBufferA.put(A[i].x);
    floatBufferA.put(A[i].y);
  }
  return checkResult(cublasSetMatrixNative(rows, cols, 8, Pointer.to(floatBufferA).withByteOffset(offsetA * 4 * 2), lda, B, ldb));
}
origin: org.nd4j/jcublas-osx

/**
 * Extended wrapper for arrays of cuComplex values. Note that this method
 * only exists for convenience and compatibility with native C code. It
 * is much more efficient to provide a Pointer to a float array containing
 * the complex numbers, where each pair of consecutive numbers in the array
 * describes the real- and imaginary part of one complex number.
 *
 * @see JCublas#cublasSetMatrix(int, int, int, Pointer, int, Pointer, int)
 */
public static int cublasSetMatrix (int rows, int cols, cuComplex A[], int offsetA, int lda, Pointer B, int ldb)
{
  ByteBuffer byteBufferA = ByteBuffer.allocateDirect(A.length * 4 * 2);
  byteBufferA.order(ByteOrder.nativeOrder());
  FloatBuffer floatBufferA = byteBufferA.asFloatBuffer();
  for (int i=0; i<A.length; i++)
  {
    floatBufferA.put(A[i].x);
    floatBufferA.put(A[i].y);
  }
  return checkResult(cublasSetMatrixNative(rows, cols, 8, Pointer.to(floatBufferA).withByteOffset(offsetA * 4 * 2), lda, B, ldb));
}
origin: org.nd4j/jcublas

/**
 * Extended wrapper for arrays of cuDoubleComplex values. Note that this method
 * only exists for convenience and compatibility with native C code. It
 * is much more efficient to provide a Pointer to a double array containing
 * the complex numbers, where each pair of consecutive numbers in the array
 * describes the real- and imaginary part of one complex number.
 *
 * @see JCublas#cublasSetMatrix(int, int, int, Pointer, int, Pointer, int)
 */
public static int cublasSetMatrix (int rows, int cols, cuDoubleComplex A[], int offsetA, int lda, Pointer B, int ldb)
{
  ByteBuffer byteBufferA = ByteBuffer.allocateDirect(A.length * 8 * 2);
  byteBufferA.order(ByteOrder.nativeOrder());
  DoubleBuffer doubleBufferA = byteBufferA.asDoubleBuffer();
  for (int i=0; i<A.length; i++)
  {
    doubleBufferA.put(A[i].x);
    doubleBufferA.put(A[i].y);
  }
  return checkResult(cublasSetMatrixNative(rows, cols, 16, Pointer.to(doubleBufferA).withByteOffset(offsetA * 8 * 2), lda, B, ldb));
}
origin: org.scalanlp/jcublas

/**
 * Extended wrapper for arrays of cuDoubleComplex values. Note that this method
 * only exists for convenience and compatibility with native C code. It
 * is much more efficient to provide a Pointer to a double array containing
 * the complex numbers, where each pair of consecutive numbers in the array
 * describes the real- and imaginary part of one complex number.
 *
 * @see JCublas#cublasSetMatrix(int, int, int, Pointer, int, Pointer, int)
 */
public static int cublasSetMatrix (int rows, int cols, cuDoubleComplex A[], int offsetA, int lda, Pointer B, int ldb)
{
 ByteBuffer byteBufferA = ByteBuffer.allocateDirect(A.length * 8 * 2);
 byteBufferA.order(ByteOrder.nativeOrder());
 DoubleBuffer doubleBufferA = byteBufferA.asDoubleBuffer();
 for (int i=0; i<A.length; i++)
 {
  doubleBufferA.put(A[i].x);
  doubleBufferA.put(A[i].y);
 }
 return checkResult(cublasSetMatrixNative(rows, cols, 16, Pointer.to(doubleBufferA).withByteOffset(offsetA * 8 * 2), lda, B, ldb));
}
origin: org.nd4j/nd4j-jcublas-common

/**
 * Extended wrapper for arrays of cuDoubleComplex values. Note that this method
 * only exists for convenience and compatibility with native C code. It
 * is much more efficient to provide a Pointer to a double array containing
 * the complex numbers, where each pair of consecutive numbers in the array
 * describes the real- and imaginary part of one complex number.
 *
 * @see JCublas#cublasSetMatrix(int, int, int, Pointer, int, Pointer, int)
 */
public static int cublasSetMatrix (int rows, int cols, cuDoubleComplex A[], int offsetA, int lda, Pointer B, int ldb)
{
  ByteBuffer byteBufferA = ByteBuffer.allocateDirect(A.length * 8 * 2);
  byteBufferA.order(ByteOrder.nativeOrder());
  DoubleBuffer doubleBufferA = byteBufferA.asDoubleBuffer();
  for (int i=0; i<A.length; i++)
  {
    doubleBufferA.put(A[i].x);
    doubleBufferA.put(A[i].y);
  }
  return checkResult(cublasSetMatrixNative(rows, cols, 16, Pointer.to(doubleBufferA).withByteOffset(offsetA * 8 * 2), lda, B, ldb));
}
origin: org.nd4j/jcublas-windows64

/**
 * Extended wrapper for arrays of cuDoubleComplex values. Note that this method
 * only exists for convenience and compatibility with native C code. It
 * is much more efficient to provide a Pointer to a double array containing
 * the complex numbers, where each pair of consecutive numbers in the array
 * describes the real- and imaginary part of one complex number.
 *
 * @see jcuda.jcublas.JCublas#cublasSetMatrix(int, int, int, jcuda.Pointer, int, jcuda.Pointer, int)
 */
public static int cublasSetMatrix (int rows, int cols, cuDoubleComplex A[], int offsetA, int lda, Pointer B, int ldb)
{
  ByteBuffer byteBufferA = ByteBuffer.allocateDirect(A.length * 8 * 2);
  byteBufferA.order(ByteOrder.nativeOrder());
  DoubleBuffer doubleBufferA = byteBufferA.asDoubleBuffer();
  for (int i=0; i<A.length; i++)
  {
    doubleBufferA.put(A[i].x);
    doubleBufferA.put(A[i].y);
  }
  return checkResult(cublasSetMatrixNative(rows, cols, 16, Pointer.to(doubleBufferA).withByteOffset(offsetA * 8 * 2), lda, B, ldb));
}
origin: org.nd4j/jcublas-osx

/**
 * Extended wrapper for arrays of cuDoubleComplex values. Note that this method
 * only exists for convenience and compatibility with native C code. It
 * is much more efficient to provide a Pointer to a double array containing
 * the complex numbers, where each pair of consecutive numbers in the array
 * describes the real- and imaginary part of one complex number.
 *
 * @see JCublas#cublasSetMatrix(int, int, int, Pointer, int, Pointer, int)
 */
public static int cublasSetMatrix (int rows, int cols, cuDoubleComplex A[], int offsetA, int lda, Pointer B, int ldb)
{
  ByteBuffer byteBufferA = ByteBuffer.allocateDirect(A.length * 8 * 2);
  byteBufferA.order(ByteOrder.nativeOrder());
  DoubleBuffer doubleBufferA = byteBufferA.asDoubleBuffer();
  for (int i=0; i<A.length; i++)
  {
    doubleBufferA.put(A[i].x);
    doubleBufferA.put(A[i].y);
  }
  return checkResult(cublasSetMatrixNative(rows, cols, 16, Pointer.to(doubleBufferA).withByteOffset(offsetA * 8 * 2), lda, B, ldb));
}
origin: org.jcuda/jcublas

/**
 * Extended wrapper for arrays of cuDoubleComplex values. Note that this method
 * only exists for convenience and compatibility with native C code. It
 * is much more efficient to provide a Pointer to a double array containing
 * the complex numbers, where each pair of consecutive numbers in the array
 * describes the real- and imaginary part of one complex number.
 *
 * @see JCublas#cublasSetMatrix(int, int, int, Pointer, int, Pointer, int)
 */
public static int cublasSetMatrix (int rows, int cols, cuDoubleComplex A[], int offsetA, int lda, Pointer B, int ldb)
{
  ByteBuffer byteBufferA = ByteBuffer.allocateDirect(A.length * 8 * 2);
  byteBufferA.order(ByteOrder.nativeOrder());
  DoubleBuffer doubleBufferA = byteBufferA.asDoubleBuffer();
  for (int i=0; i<A.length; i++)
  {
    doubleBufferA.put(A[i].x);
    doubleBufferA.put(A[i].y);
  }
  return checkResult(cublasSetMatrixNative(rows, cols, 16, Pointer.to(doubleBufferA).withByteOffset(offsetA * 8 * 2), lda, B, ldb));
}
jcuda.jcublasJCublascublasSetMatrixNative

Popular methods of JCublas

  • checkResult
    If the given result is different to cublasStatus.CUBLAS_STATUS_SUCCESS and exceptions have been enab
  • checkResultBLAS
    Obtain the current CUBLAS status by calling cublasGetErrorNative, and store the result as the lastRe
  • cublasAllocNative
  • cublasCaxpyNative
  • cublasCcopyNative
  • cublasCdotcNative
  • cublasCdotuNative
  • cublasCgbmvNative
  • cublasCgemmNative
  • cublasCgemvNative
  • cublasCgercNative
  • cublasCgeruNative
  • cublasCgercNative,
  • cublasCgeruNative,
  • cublasChbmvNative,
  • cublasChemmNative,
  • cublasChemvNative,
  • cublasCher2Native,
  • cublasCher2kNative,
  • cublasCherNative,
  • cublasCherkNative,
  • cublasChpr2Native

Popular in Java

  • Parsing JSON documents to java classes using gson
  • getContentResolver (Context)
  • getApplicationContext (Context)
  • getSystemService (Context)
  • SQLException (java.sql)
    An exception that indicates a failed JDBC operation. It provides the following information about pro
  • GregorianCalendar (java.util)
    GregorianCalendar is a concrete subclass of Calendarand provides the standard calendar used by most
  • LinkedList (java.util)
    Doubly-linked list implementation of the List and Dequeinterfaces. Implements all optional list oper
  • TimeUnit (java.util.concurrent)
    A TimeUnit represents time durations at a given unit of granularity and provides utility methods to
  • JLabel (javax.swing)
  • SAXParseException (org.xml.sax)
    Encapsulate an XML parse error or warning.This exception may include information for locating the er
Codota Logo
  • Products

    Search for Java codeSearch for JavaScript codeEnterprise
  • IDE Plugins

    IntelliJ IDEAWebStormAndroid StudioEclipseVisual Studio CodePyCharmSublime TextPhpStormVimAtomGoLandRubyMineEmacsJupyter
  • Company

    About UsContact UsCareers
  • Resources

    FAQBlogCodota Academy Plugin user guide Terms of usePrivacy policyJava Code IndexJavascript Code Index
Get Codota for your IDE now