Codota Logo
PreDeConNeighborPredicate.preprocess
Code IndexAdd Codota to your IDE (free)

How to use
preprocess
method
in
de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan.PreDeConNeighborPredicate

Best Java code snippets using de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan.PreDeConNeighborPredicate.preprocess (Showing top 3 results out of 315)

  • Common ways to obtain PreDeConNeighborPredicate
private void myMethod () {
PreDeConNeighborPredicate p =
  • Codota IconPreDeCon.Settings settings;new PreDeConNeighborPredicate<>(settings)
  • Smart code suggestions by Codota
}
origin: elki-project/elki

@SuppressWarnings("unchecked")
@Override
public Instance instantiate(Database database) {
 DistanceQuery<V> dq = QueryUtil.getDistanceQuery(database, distFunc);
 Relation<V> relation = (Relation<V>) dq.getRelation();
 RangeQuery<V> rq = database.getRangeQuery(dq);
 mvSize.reset();
 mvVar.reset();
 DataStore<PreDeConModel> storage = preprocess(PreDeConModel.class, relation, rq);
 if(LOG.isVerbose()) {
  LOG.verbose("Average neighborhood size: " + mvSize.toString());
  LOG.verbose("Average variance size: " + mvVar.toString());
  final int dim = RelationUtil.dimensionality(relation);
  if(mvSize.getMean() < 5 * dim) {
   LOG.verbose("The epsilon parameter may be chosen too small.");
  }
  else if(mvSize.getMean() > .5 * relation.size()) {
   LOG.verbose("The epsilon parameter may be chosen too large.");
  }
  else {
   LOG.verbose("As a first guess, you can try minPts < " + ((int) mvSize.getMean() / dim) //
     + " and delta > " + mvVar.getMean() + //
     ", but you will need to experiment with these parameters and epsilon.");
  }
 }
 return new Instance(dq.getRelation().getDBIDs(), storage);
}
origin: de.lmu.ifi.dbs.elki/elki

@SuppressWarnings("unchecked")
@Override
public <T> NeighborPredicate.Instance<T> instantiate(Database database, SimpleTypeInformation<?> type) {
 DistanceQuery<V> dq = QueryUtil.getDistanceQuery(database, distFunc);
 Relation<V> relation = (Relation<V>) dq.getRelation();
 RangeQuery<V> rq = database.getRangeQuery(dq);
 mvSize.reset();
 mvVar.reset();
 DataStore<PreDeConModel> storage = preprocess(PreDeConModel.class, relation, rq);
 if(LOG.isVerbose()) {
  LOG.verbose("Average neighborhood size: " + mvSize.toString());
  LOG.verbose("Average variance size: " + mvVar.toString());
  final int dim = RelationUtil.dimensionality(relation);
  if(mvSize.getMean() < 5 * dim) {
   LOG.verbose("The epsilon parameter may be chosen too small.");
  }
  else if(mvSize.getMean() > .5 * relation.size()) {
   LOG.verbose("The epsilon parameter may be chosen too large.");
  }
  else {
   LOG.verbose("As a first guess, you can try minPts < " + ((int) mvSize.getMean() / dim) //
     + " and delta > " + mvVar.getMean() + //
     ", but you will need to experiment with these parameters and epsilon.");
  }
 }
 return (NeighborPredicate.Instance<T>) new Instance(dq.getRelation().getDBIDs(), storage);
}
origin: de.lmu.ifi.dbs.elki/elki-clustering

@SuppressWarnings("unchecked")
@Override
public Instance instantiate(Database database) {
 DistanceQuery<V> dq = QueryUtil.getDistanceQuery(database, distFunc);
 Relation<V> relation = (Relation<V>) dq.getRelation();
 RangeQuery<V> rq = database.getRangeQuery(dq);
 mvSize.reset();
 mvVar.reset();
 DataStore<PreDeConModel> storage = preprocess(PreDeConModel.class, relation, rq);
 if(LOG.isVerbose()) {
  LOG.verbose("Average neighborhood size: " + mvSize.toString());
  LOG.verbose("Average variance size: " + mvVar.toString());
  final int dim = RelationUtil.dimensionality(relation);
  if(mvSize.getMean() < 5 * dim) {
   LOG.verbose("The epsilon parameter may be chosen too small.");
  }
  else if(mvSize.getMean() > .5 * relation.size()) {
   LOG.verbose("The epsilon parameter may be chosen too large.");
  }
  else {
   LOG.verbose("As a first guess, you can try minPts < " + ((int) mvSize.getMean() / dim) //
     + " and delta > " + mvVar.getMean() + //
     ", but you will need to experiment with these parameters and epsilon.");
  }
 }
 return new Instance(dq.getRelation().getDBIDs(), storage);
}
de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscanPreDeConNeighborPredicatepreprocess

Popular methods of PreDeConNeighborPredicate

  • <init>
    Constructor.

Popular in Java

  • Reactive rest calls using spring rest template
  • getSupportFragmentManager (FragmentActivity)
  • findViewById (Activity)
  • getOriginalFilename (MultipartFile)
    Return the original filename in the client's filesystem.This may contain path information depending
  • ResultSet (java.sql)
    An interface for an object which represents a database table entry, returned as the result of the qu
  • ArrayList (java.util)
    Resizable-array implementation of the List interface. Implements all optional list operations, and p
  • Arrays (java.util)
    This class contains various methods for manipulating arrays (such as sorting and searching). This cl
  • Queue (java.util)
    A collection designed for holding elements prior to processing. Besides basic java.util.Collection o
  • Timer (java.util)
    A facility for threads to schedule tasks for future execution in a background thread. Tasks may be s
  • HttpServlet (javax.servlet.http)
    Provides an abstract class to be subclassed to create an HTTP servlet suitable for a Web site. A sub
Codota Logo
  • Products

    Search for Java codeSearch for JavaScript codeEnterprise
  • IDE Plugins

    IntelliJ IDEAWebStormAndroid StudioEclipseVisual Studio CodePyCharmSublime TextPhpStormVimAtomGoLandRubyMineEmacsJupyter
  • Company

    About UsContact UsCareers
  • Resources

    FAQBlogCodota Academy Plugin user guide Terms of usePrivacy policyJava Code IndexJavascript Code Index
Get Codota for your IDE now