Codota Logo
WeightInit
Code IndexAdd Codota to your IDE (free)

How to use
WeightInit
in
org.deeplearning4j.nn.weights

Best Java code snippets using org.deeplearning4j.nn.weights.WeightInit (Showing top 4 results out of 315)

  • Add the Codota plugin to your IDE and get smart completions
private void myMethod () {
ArrayList a =
  • Codota Iconnew ArrayList<String>()
  • Codota Iconnew ArrayList()
  • Codota Iconnew ArrayList<Object>()
  • Smart code suggestions by Codota
}
origin: Waikato/wekaDeeplearning4j

@Test
public void testWeightInit() throws Exception {
 List<WeightInit> skipWeightInits = new ArrayList<>();
 skipWeightInits.add(WeightInit.IDENTITY);
 for (WeightInit wi : WeightInit.values()) {
  if (skipWeightInits.contains(wi)) {
   continue;
  }
  NeuralNetConfiguration conf = new NeuralNetConfiguration();
  conf.setWeightInit(wi);
  checkAppliedParameters(conf, wi, BaseLayer::getWeightInit);
 }
}
origin: org.deeplearning4j/deeplearning4j-play

if (nParams > 0) {
  WeightInit wi = bl.getWeightInit();
  String str = wi.toString();
  if (wi == WeightInit.DISTRIBUTION) {
    str += bl.getDist();
origin: org.deeplearning4j/deeplearning4j-play_2.10

if (nParams > 0) {
  WeightInit wi = bl.getWeightInit();
  String str = wi.toString();
  if (wi == WeightInit.DISTRIBUTION) {
    str += bl.getDist();
origin: org.deeplearning4j/deeplearning4j-play_2.11

if (nParams > 0) {
  WeightInit wi = bl.getWeightInit();
  String str = wi.toString();
  if (wi == WeightInit.DISTRIBUTION) {
    str += bl.getDist();
org.deeplearning4j.nn.weightsWeightInit

Javadoc

Weight initialization scheme

DISTRIBUTION: Sample weights from a provided distribution

ZERO: Generate weights as zeros

SIGMOID_UNIFORM: A version of XAVIER_UNIFORM for sigmoid activation functions. U(-r,r) with r=4*sqrt(6/(fanIn + fanOut))

UNIFORM: Uniform U[-a,a] with a=1/sqrt(fanIn). "Commonly used heuristic" as per Glorot and Bengio 2010

XAVIER: As per Glorot and Bengio 2010: Gaussian distribution with mean 0, variance 2.0/(fanIn + fanOut)

XAVIER_UNIFORM: As per Glorot and Bengio 2010: Uniform distribution U(-s,s) with s = sqrt(6/(fanIn + fanOut))

XAVIER_FAN_IN: Similar to Xavier, but 1/fanIn -> Caffe originally used this.

XAVIER_LEGACY: Xavier weight init in DL4J up to 0.6.0. XAVIER should be preferred.

RELU: He et al. (2015), "Delving Deep into Rectifiers". Normal distribution with variance 2.0/nIn

RELU_UNIFORM: He et al. (2015), "Delving Deep into Rectifiers". Uniform distribution U(-s,s) with s = sqrt(6/fanIn)

Most used methods

  • toString
  • values

Popular in Java

  • Parsing JSON documents to java classes using gson
  • setRequestProperty (URLConnection)
  • notifyDataSetChanged (ArrayAdapter)
  • scheduleAtFixedRate (Timer)
    Schedules the specified task for repeated fixed-rate execution, beginning after the specified delay.
  • String (java.lang)
  • Thread (java.lang)
    A thread is a thread of execution in a program. The Java Virtual Machine allows an application to ha
  • SocketException (java.net)
    This SocketException may be thrown during socket creation or setting options, and is the superclass
  • MessageFormat (java.text)
    MessageFormat provides a means to produce concatenated messages in language-neutral way. Use this to
  • Random (java.util)
    This class provides methods that return pseudo-random values.It is dangerous to seed Random with the
  • Loader (org.hibernate.loader)
    Abstract superclass of object loading (and querying) strategies. This class implements useful common
Codota Logo
  • Products

    Search for Java codeSearch for JavaScript codeEnterprise
  • IDE Plugins

    IntelliJ IDEAWebStormAndroid StudioEclipseVisual Studio CodePyCharmSublime TextPhpStormVimAtomGoLandRubyMineEmacsJupyter
  • Company

    About UsContact UsCareers
  • Resources

    FAQBlogCodota Academy Plugin user guide Terms of usePrivacy policyJava Code IndexJavascript Code Index
Get Codota for your IDE now