Codota Logo
DataIndexer
Code IndexAdd Codota to your IDE (free)

How to use
DataIndexer
in
opennlp.model

Best Java code snippets using opennlp.model.DataIndexer (Showing top 10 results out of 315)

  • Add the Codota plugin to your IDE and get smart completions
private void myMethod () {
OutputStreamWriter o =
  • Codota IconOutputStream out;new OutputStreamWriter(out)
  • Codota IconOutputStream out;String charsetName;new OutputStreamWriter(out, charsetName)
  • Codota IconHttpURLConnection connection;new OutputStreamWriter(connection.getOutputStream())
  • Smart code suggestions by Codota
}
origin: Ailab403/ailab-mltk4j

public LogLikelihoodFunction(DataIndexer indexer) {
 // get data from indexer.
 if (indexer instanceof OnePassRealValueDataIndexer) {
  this.values = indexer.getValues();
 } else {
  this.values = null;
 }
 this.contexts = indexer.getContexts();
 this.outcomeList = indexer.getOutcomeList();
 this.numTimesEventsSeen = indexer.getNumTimesEventsSeen();
 this.outcomeLabels = indexer.getOutcomeLabels();
 this.predLabels = indexer.getPredLabels();
 this.numOutcomes = indexer.getOutcomeLabels().length;
 this.numFeatures = indexer.getPredLabels().length;
 this.numContexts = this.contexts.length;
 this.domainDimension = numOutcomes * numFeatures;
 this.probModel = new double[numContexts][numOutcomes];
 this.gradient = null;
}
origin: Ailab403/ailab-mltk4j

 numSequences++;
outcomeList  = di.getOutcomeList();
predLabels = di.getPredLabels();
pmap = new IndexHashTable<String>(predLabels, 0.7d);
numEvents = di.getNumEvents();
outcomeLabels = di.getOutcomeLabels();
omap = new HashMap<String,Integer>();
for (int oli=0;oli<outcomeLabels.length;oli++) {
 omap.put(outcomeLabels[oli], oli);
outcomeList = di.getOutcomeList();
origin: org.apache.opennlp/opennlp-maxent

 numSequences++;
outcomeList  = di.getOutcomeList();
predLabels = di.getPredLabels();
pmap = new IndexHashTable<String>(predLabels, 0.7d);
numEvents = di.getNumEvents();
outcomeLabels = di.getOutcomeLabels();
omap = new HashMap<String,Integer>();
for (int oli=0;oli<outcomeLabels.length;oli++) {
 omap.put(outcomeLabels[oli], oli);
outcomeList = di.getOutcomeList();
origin: org.apache.opennlp/opennlp-maxent

public LogLikelihoodFunction(DataIndexer indexer) {
 // get data from indexer.
 if (indexer instanceof OnePassRealValueDataIndexer) {
  this.values = indexer.getValues();
 } else {
  this.values = null;
 }
 this.contexts = indexer.getContexts();
 this.outcomeList = indexer.getOutcomeList();
 this.numTimesEventsSeen = indexer.getNumTimesEventsSeen();
 this.outcomeLabels = indexer.getOutcomeLabels();
 this.predLabels = indexer.getPredLabels();
 this.numOutcomes = indexer.getOutcomeLabels().length;
 this.numFeatures = indexer.getPredLabels().length;
 this.numContexts = this.contexts.length;
 this.domainDimension = numOutcomes * numFeatures;
 this.probModel = new double[numContexts][numOutcomes];
 this.gradient = null;
}
origin: Ailab403/ailab-mltk4j

public AbstractModel trainModel(int iterations, DataIndexer di, int cutoff, boolean useAverage) {
 display("Incorporating indexed data for training...  \n");
 contexts = di.getContexts();
 values = di.getValues();
 numTimesEventsSeen = di.getNumTimesEventsSeen();
 numEvents = di.getNumEvents();
 numUniqueEvents = contexts.length;
 outcomeLabels = di.getOutcomeLabels();
 outcomeList = di.getOutcomeList();
 predLabels = di.getPredLabels();
 numPreds = predLabels.length;
 numOutcomes = outcomeLabels.length;
 
 display("done.\n");
 
 display("\tNumber of Event Tokens: " + numUniqueEvents + "\n");
 display("\t    Number of Outcomes: " + numOutcomes + "\n");
 display("\t  Number of Predicates: " + numPreds + "\n");
 
 display("Computing model parameters...\n");
 MutableContext[] finalParameters = findParameters(iterations, useAverage);
 display("...done.\n");
 /*************** Create and return the model ******************/
 return new PerceptronModel(finalParameters, predLabels, outcomeLabels);
}

origin: org.apache.opennlp/opennlp-maxent

public AbstractModel trainModel(int iterations, DataIndexer di, int cutoff, boolean useAverage) {
 display("Incorporating indexed data for training...  \n");
 contexts = di.getContexts();
 values = di.getValues();
 numTimesEventsSeen = di.getNumTimesEventsSeen();
 numEvents = di.getNumEvents();
 numUniqueEvents = contexts.length;
 outcomeLabels = di.getOutcomeLabels();
 outcomeList = di.getOutcomeList();
 predLabels = di.getPredLabels();
 numPreds = predLabels.length;
 numOutcomes = outcomeLabels.length;
 
 display("done.\n");
 
 display("\tNumber of Event Tokens: " + numUniqueEvents + "\n");
 display("\t    Number of Outcomes: " + numOutcomes + "\n");
 display("\t  Number of Predicates: " + numPreds + "\n");
 
 display("Computing model parameters...\n");
 MutableContext[] finalParameters = findParameters(iterations, useAverage);
 display("...done.\n");
 /*************** Create and return the model ******************/
 return new PerceptronModel(finalParameters, predLabels, outcomeLabels);
}

origin: org.maochen.nlp/CoreNLP-NLP

trainingDataFeatNameIndices = di.getContexts();
trainingDataFeatValues = di.getValues();
this.cutoff = cutoff;
predicateCounts = di.getPredCounts();
numTimesEventsSeen = di.getNumTimesEventsSeen();
numUniqueEvents = trainingDataFeatNameIndices.length;
this.prior = modelPrior;
labels = di.getOutcomeLabels();
outcomeList = di.getOutcomeList();
featNames = di.getPredLabels();
prior.setLabels(labels, featNames);
origin: org.apache.opennlp/opennlp-maxent

contexts = di.getContexts();
values = di.getValues();
this.cutoff = cutoff;
predicateCounts = di.getPredCounts();
numTimesEventsSeen = di.getNumTimesEventsSeen();
numUniqueEvents = contexts.length;
this.prior = modelPrior;
outcomeLabels = di.getOutcomeLabels();
outcomeList = di.getOutcomeList();
numOutcomes = outcomeLabels.length;
predLabels = di.getPredLabels();
prior.setLabels(outcomeLabels,predLabels);
numPreds = predLabels.length;
origin: Ailab403/ailab-mltk4j

contexts = di.getContexts();
values = di.getValues();
this.cutoff = cutoff;
predicateCounts = di.getPredCounts();
numTimesEventsSeen = di.getNumTimesEventsSeen();
numUniqueEvents = contexts.length;
this.prior = modelPrior;
outcomeLabels = di.getOutcomeLabels();
outcomeList = di.getOutcomeList();
numOutcomes = outcomeLabels.length;
predLabels = di.getPredLabels();
prior.setLabels(outcomeLabels,predLabels);
numPreds = predLabels.length;
origin: joliciel-informatique/talismane

contexts = di.getContexts();
values = di.getValues();
this.cutoff = cutoff;
predicateCounts = di.getPredCounts();
numTimesEventsSeen = di.getNumTimesEventsSeen();
numUniqueEvents = contexts.length;
this.prior = modelPrior;
outcomeLabels = di.getOutcomeLabels();
outcomeList = di.getOutcomeList();
numOutcomes = outcomeLabels.length;
predLabels = di.getPredLabels();
prior.setLabels(outcomeLabels, predLabels);
numPreds = predLabels.length;
opennlp.modelDataIndexer

Javadoc

Object which compresses events in memory and performs feature selection.

Most used methods

  • getContexts
    Returns the array of predicates seen in each event.
  • getNumTimesEventsSeen
    Returns an array indicating the number of times a particular event was seen.
  • getOutcomeLabels
    Returns an array of outcome names.
  • getOutcomeList
    Returns an array indicating the outcome index for each event.
  • getPredCounts
    Returns an array of the count of each predicate in the events.
  • getPredLabels
    Returns an array of predicate/context names.
  • getValues
    Returns the values associated with each event context or null if integer values are to be used.
  • getNumEvents
    Returns the number of total events indexed.

Popular in Java

  • Start an intent from android
  • scheduleAtFixedRate (Timer)
  • notifyDataSetChanged (ArrayAdapter)
  • findViewById (Activity)
  • Table (com.google.common.collect)
    A collection that associates an ordered pair of keys, called a row key and a column key, with a sing
  • Comparator (java.util)
    A Comparator is used to compare two objects to determine their ordering with respect to each other.
  • List (java.util)
    A List is a collection which maintains an ordering for its elements. Every element in the List has a
  • ConcurrentHashMap (java.util.concurrent)
    A hash table supporting full concurrency of retrievals and adjustable expected concurrency for updat
  • Executors (java.util.concurrent)
    Factory and utility methods for Executor, ExecutorService, ScheduledExecutorService, ThreadFactory,
  • Semaphore (java.util.concurrent)
    A counting semaphore. Conceptually, a semaphore maintains a set of permits. Each #acquire blocks if
Codota Logo
  • Products

    Search for Java codeSearch for JavaScript codeEnterprise
  • IDE Plugins

    IntelliJ IDEAWebStormAndroid StudioEclipseVisual Studio CodePyCharmSublime TextPhpStormVimAtomGoLandRubyMineEmacsJupyter
  • Company

    About UsContact UsCareers
  • Resources

    FAQBlogCodota Academy Plugin user guide Terms of usePrivacy policyJava Code IndexJavascript Code Index
Get Codota for your IDE now