Codota Logo
AbstractHDBSCAN
Code IndexAdd Codota to your IDE (free)

How to use
AbstractHDBSCAN
in
de.lmu.ifi.dbs.elki.algorithm.clustering.hierarchical

Best Java code snippets using de.lmu.ifi.dbs.elki.algorithm.clustering.hierarchical.AbstractHDBSCAN (Showing top 9 results out of 315)

  • Add the Codota plugin to your IDE and get smart completions
private void myMethod () {
Point p =
  • Codota Iconnew Point(x, y)
  • Codota Iconnew Point()
  • Codota IconMouseEvent e;e.getPoint()
  • Smart code suggestions by Codota
}
origin: de.lmu.ifi.dbs.elki/elki

@Override
public TypeInformation[] getInputTypeRestriction() {
 return TypeUtil.array(getDistanceFunction().getInputTypeRestriction());
}
origin: de.lmu.ifi.dbs.elki/elki-clustering

/**
 * Compute the core distances for all objects.
 *
 * @param ids Objects
 * @param knnQ kNN query
 * @param minPts Minimum neighborhood size
 * @return Data store with core distances
 */
protected WritableDoubleDataStore computeCoreDists(DBIDs ids, KNNQuery<O> knnQ, int minPts) {
 final Logging LOG = getLogger();
 final WritableDoubleDataStore coredists = DataStoreUtil.makeDoubleStorage(ids, DataStoreFactory.HINT_HOT | DataStoreFactory.HINT_DB);
 FiniteProgress cprog = LOG.isVerbose() ? new FiniteProgress("Computing core sizes", ids.size(), LOG) : null;
 for(DBIDIter iter = ids.iter(); iter.valid(); iter.advance()) {
  coredists.put(iter, knnQ.getKNNForDBID(iter, minPts).getKNNDistance());
  LOG.incrementProcessed(cprog);
 }
 LOG.ensureCompleted(cprog);
 return coredists;
}
origin: de.lmu.ifi.dbs.elki/elki

/**
 * Compute the core distances for all objects.
 *
 * @param ids Objects
 * @param knnQ kNN query
 * @param minPts Minimum neighborhood size
 * @return Data store with core distances
 */
protected WritableDoubleDataStore computeCoreDists(DBIDs ids, KNNQuery<O> knnQ, int minPts) {
 final Logging LOG = getLogger();
 final WritableDoubleDataStore coredists = DataStoreUtil.makeDoubleStorage(ids, DataStoreFactory.HINT_HOT | DataStoreFactory.HINT_DB);
 FiniteProgress cprog = LOG.isVerbose() ? new FiniteProgress("Computing core sizes", ids.size(), LOG) : null;
 for(DBIDIter iter = ids.iter(); iter.valid(); iter.advance()) {
  coredists.put(iter, knnQ.getKNNForDBID(iter, minPts).getKNNDistance());
  LOG.incrementProcessed(cprog);
 }
 LOG.ensureCompleted(cprog);
 return coredists;
}
origin: elki-project/elki

/**
 * Compute the core distances for all objects.
 *
 * @param ids Objects
 * @param knnQ kNN query
 * @param minPts Minimum neighborhood size
 * @return Data store with core distances
 */
protected WritableDoubleDataStore computeCoreDists(DBIDs ids, KNNQuery<O> knnQ, int minPts) {
 final Logging LOG = getLogger();
 final WritableDoubleDataStore coredists = DataStoreUtil.makeDoubleStorage(ids, DataStoreFactory.HINT_HOT | DataStoreFactory.HINT_DB);
 FiniteProgress cprog = LOG.isVerbose() ? new FiniteProgress("Computing core sizes", ids.size(), LOG) : null;
 for(DBIDIter iter = ids.iter(); iter.valid(); iter.advance()) {
  coredists.put(iter, knnQ.getKNNForDBID(iter, minPts).getKNNDistance());
  LOG.incrementProcessed(cprog);
 }
 LOG.ensureCompleted(cprog);
 return coredists;
}
origin: elki-project/elki

@Override
public TypeInformation[] getInputTypeRestriction() {
 return TypeUtil.array(getDistanceFunction().getInputTypeRestriction());
}
origin: elki-project/elki

final Logging LOG = getLogger();
origin: de.lmu.ifi.dbs.elki/elki-clustering

@Override
public TypeInformation[] getInputTypeRestriction() {
 return TypeUtil.array(getDistanceFunction().getInputTypeRestriction());
}
origin: de.lmu.ifi.dbs.elki/elki-clustering

final Logging LOG = getLogger();
origin: de.lmu.ifi.dbs.elki/elki

final Logging LOG = getLogger();
de.lmu.ifi.dbs.elki.algorithm.clustering.hierarchicalAbstractHDBSCAN

Javadoc

Abstract base class for HDBSCAN variations.

Reference:

R. J. G. B. Campello, D. Moulavi, J. Sander
Density-Based Clustering Based on Hierarchical Density Estimates
Pacific-Asia Conf. Advances in Knowledge Discovery and Data Mining (PAKDD)

Most used methods

  • getDistanceFunction
  • getLogger

Popular in Java

  • Creating JSON documents from java classes using gson
  • compareTo (BigDecimal)
  • findViewById (Activity)
  • addToBackStack (FragmentTransaction)
  • GridLayout (java.awt)
    The GridLayout class is a layout manager that lays out a container's components in a rectangular gri
  • Enumeration (java.util)
    A legacy iteration interface.New code should use Iterator instead. Iterator replaces the enumeration
  • Map (java.util)
    A Map is a data structure consisting of a set of keys and values in which each key is mapped to a si
  • PriorityQueue (java.util)
    An unbounded priority Queue based on a priority heap. The elements of the priority queue are ordered
  • ConcurrentHashMap (java.util.concurrent)
    A hash table supporting full concurrency of retrievals and adjustable expected concurrency for updat
  • JTextField (javax.swing)
Codota Logo
  • Products

    Search for Java codeSearch for JavaScript codeEnterprise
  • IDE Plugins

    IntelliJ IDEAWebStormAndroid StudioEclipseVisual Studio CodePyCharmSublime TextPhpStormVimAtomGoLandRubyMineEmacsJupyter
  • Company

    About UsContact UsCareers
  • Resources

    FAQBlogCodota Academy Plugin user guide Terms of usePrivacy policyJava Code IndexJavascript Code Index
Get Codota for your IDE now